Year 3 Learning and Progression Steps for Mathematics

What are Learning and Progression Steps (LAPS)?

The Learning and Progression Steps are designed to scaffold the learning required in order to meet the expectations of the National Curriculum. Statements in the Lancashire Key Learning for Mathematics document have been broken down into smaller steps to support teachers in planning appropriate learning opportunities. These key pieces of learning will support pupils in becoming fluent in the knowledge and skills of the curriculum and ensure that the learning is effective and sustained.

The number of steps is dependent on the learning and do not constitute expectations for the end of each term. The colour coding is an approximate indicator of end term expectations
Orange (including the end of previous year expectation) are the steps in learning for the autumn term.
Green are the steps in learning for the spring term.
Yellow are the steps in learning for the summer term and incorporate the end of year expectations.
The colours correspond with the structure of the Lancashire Mathematics Curriculum and reflect how often each learning objective is explicitly taught across the year. Some key learning objectives are not taught in every term, and in some cases not in the summer term. This means that end of year expectations may need to be met before the end of the summer term

The final step in the progression for each strand of learning is the end of year expectation.
The steps are not of equal size and different amounts of time may be required for children to move between individual steps. For example,

Understand how multiplication and division statements can be represented using arrays	Use arrays to identify what the term 'factor' means	Use arrays to identify all the factor pairs of a given number	Identify factor pairs of a given number within the multiplication tables that they know

Some learning within the same end of year expectation has been split and designed to run concurrently alongside each other. For example,

```
Read and write number
up to }1000\mathrm{ in numeral
```

 and in words
 | Read multiples of 1000 to 10000 in
 numerals and in words | Read multiples of 100 to 10000 in
 numerals and in words | Read numbers to 10000 where 0 is
 not used as a place holder | Read numbers to 10000 where 0 is
 used as a place holder |
| :---: | :---: | :---: | :---: | :---: |
| Write multiples of 1000 to 10000 in
 numerals and in words | Write multiples of 100 to 10000 in
 numerals and in words | Write numbers to 10000 where 0 is
 not used as a place holder | Write numbers to 10000 where 0 is
 used as a place holder |

Read and write numbers to at least 10000

Some LAPS may need to be completed before another can be started.

Where have they come from?

The Learning and Progression Steps (LAPS) have been derived from the Lancashire Key Learning in Mathematics statements, identified primarily from the National Curriculum 2014 programmes of study.

How are they different from the Key Learning Statements?

The Learning and Progression Steps (LAPS) are smaller, progressive steps which support learning towards the Key Learning in Mathematics expectations.

How are they different from the Key Learning Indicators of Performance (KLIPs)?

The Key Learning Indicators of Performance (KLIPs) document is an assessment tool. The Learning and Progression Steps (LAPS) document is a planning tool and is not intended to be used for summative assessment purposes. However, they may support teachers in judging whether children are on track to meet the end of year expectations at different points throughout the year.

The terms 'entering', 'developing' and 'secure' are used in Lancashire's assessment approach, KLIPs, as summative judgements in relation to age related expectations. Definitions for these terms can be found in the introduction to the KLIPs document.

How might Learning and Progression Steps (LAPS) in Mathematics be useful?

Learning and Progression Steps (LAPS) may be used in a number of ways. For whole class teaching, LAPS may be used to support differentiation. When planning, it may be appropriate to use LAPS statements to inform learning objectives for a session or number of sessions. Learning and Progression Steps (LAPS) in Mathematics should be selected according to the learning needs of the individual or group. Emphasis however, should always be on developing breadth and depth of learning to ensure skills, knowledge and understanding are sufficiently embedded before moving on.
The LAPS should not be used as an assessment tool, but they can inform teachers about children's progress towards the end of year expectations at the end of each term.

Are LAPS consistent with the other resources from the Lancashire Mathematics Team?

Yes, the LAPS are related to the content of the Mathematics Planning Support Disc and also the Progression Towards Written Calculation Policies and the Progression in Mental Calculation Strategies.
These can be found on the website:
www.lancsngfl.ac.uk/curriculum/primarymaths

Key Learning in Mathematics - Year 3

Number - number and place value

- Count from 0 in multiples of $4,8,50$ and 100
- Count up and down in tenths
- Read and write numbers up to 1000 in numerals and in words
- Read and write numbers with one decimal place
- Identify, represent and estimate numbers using different representations (including the number line)
- Recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
- Identify the value of each digit to one decimal place
- Partition numbers in different ways (e.g. $146=100+40+6$ and $146=130+16$)
- Compare and order numbers up to 1000
- Compare and order numbers with one decimal place
- Find 1, 10 or 100 more or less than a given number
- Round numbers to at least 1000 to the nearest 10 or 100
- Find the effect of multiplying a one- or two-digit number by 10 and 100, identify the value of the digits in the answer
- Describe and extend number sequences involving counting on or back in different steps
- Read Roman numerals from I to XII
- Solve number problems and practical problems involving these ideas

Number - fractions

- Show practically or pictorially that a fraction is one whole number divided by another (e.g. $\frac{3}{4}$ can be interpreted as $3 \div 4$)
- Understand that finding a fraction of an amount relates to division
- Recognise that tenths arise from dividing objects into 10 equal parts and in dividing one-digit numbers or quantities by 10
- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- Recognise and show, using diagrams, equivalent fractions with small denominators
- Add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$]
- Compare and order unit fractions, and fractions with the same denominators (including on a number line)
- Count on and back in steps of $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{3}$
- Solve problems that involve all of the above

Number - addifion and subtraction

- Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
- Select a mental strategy appropriate for the numbers involved in the calculation
- Understand and use take away and difference for subtraction, deciding on the most efficient method for the numbers involved, irrespective of context
- Recall/use addition/subtraction facts for 100 (multiples of 5 and 10)
- Derive and use addition and subtraction facts for 100
- Derive and use addition and subtraction facts for multiples of 100 totalling 1000
- Add and subtract numbers mentally, including
- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Geometry - properties of shapes

- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them
- Recognise angles as a property of shape or a description of a turn
- Identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
- Identify horizontal and vertical lines and pairs of perpendicular and parallel lines

Geometry - position and direction

- Describe positions on a square grid labelled with letters and numbers

Statistics

- Use sorting diagrams to compare and sort objects, numbers and common 2-D and 3-D shapes and everyday objects
- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables

Number - multiplication and division

- Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
- Understand that division is the inverse of multiplication and vice versa
- Understand how multiplication and division statements can be represented using arrays
- Understand division as sharing and grouping and use each appropriately
- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- Derive and use doubles of all numbers to 100 and corresponding halves
- Derive and use doubles of all multiples of 50 to 500
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- Solve problems, including missing number problems, involving multiplication and division (and interpreting remainders), including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Measures

- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g) volume/capacity (l/ml)
- Continue to estimate and measure temperature to the nearest degree $\left({ }^{\circ} \mathrm{C}\right)$ using thermometers
- Understand perimeter is a measure of distance around the boundary of a shape
- Measure the perimeter of simple 2-D shapes
- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24 -hour clocks
- Estimate/read time with increasing accuracy to the nearest minute
- Record/compare time in terms of seconds, minutes, hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon, midnight
- Know the number of seconds in a minute and the number of days in each month, year and leap year
- Compare durations of events [for example to calculate the time taken by particular events or tasks]
- Continue to recognise and use the symbols for pounds ($£$) and pence (p) and understand that the decimal point separates pounds/pence
- Recognise that ten 10 p coins equal $£ 1$ and that each coin is $\frac{1}{10}$ of $£ 1$
- Add and subtract amounts of money to give change, using both $£$ and p in practical contexts
- Solve problems involving money and measures and simple problems involving passage of time

These Learning and Progression Statements (LAPS) are designed to show the necessary steps in learning to make effective and sustainable progress within a single year. They begin with the 'end of year' expectation from the previous year and build up to the 'end of year expectation' of the current year.
The number of steps is dependent on the learning and do not constitute expectations for the end of each term.
The steps are not of equal size and different amounts of time may be required for children to move between individual steps.

Compare and order numbers from 0 up to 100; use <, > and = signs	Compare two numbers up to 1000 when represented using the same concrete materials saying which number is greater or less and use <, > and = correctly. Pay particular attention to numbers that have the same digits, e.g. 634 and 643		Compare three or more numbers up to 1000 when represented using the same concrete materials saying which numbers are greater or less and use <, > and = correctly. Pay particular attention to numbers that have the same digits, e.g. $615<652>625$		Order numbers up to 1000 when represented using the same concrete materials saying which numbers are greater or less. Pay particular attention to numbers that have the same digits, e.g. 65,156 and 651		Order numbers up to 1000 saying which numbers are greater or less. Pay particular attention to numbers that have the same digits, e.g. 65,156 and 651		Compare and order numbers up to 1000
No equivalent objective in Year 2	Compare two or more numbers with ones and tenths using concrete materials saying which has more and less and use <, > and = correctly. Pay particular attention to numbers that have the same digits, e.g. 5.6 and 6.5	Order numbers with ones and tenths using concrete materials saying which numbers are greater or less. Pay particular attention to numbers that have the same digits, e.g. 6.1, 5.6 and 6.5		Compare two or more numbers with tens, ones and tenths using concrete materials saying which has more and less and use <, > and = correctly. Pay particular attention to numbers that have the same digits, e.g. 15.6 and 61.5	Order numbers with tens, ones and tenths saying using concrete materials saying which numbers are greater or less. Pay particular attention to numbers that have the same digits, e.g. $56.1,15.6$ and 61.5	Compare two or more numbers with hundreds, tens, ones and tenths saying which has more and less and use <, > and = correctly. Pay particular attention to numbers that have the same digits, e.g. 115.6 and 161.5		Order numbers with up to three-digits (hundreds, tens, ones) and tenths saying which numbers are greater or less. Pay particular attention to numbers that have the same digits, e.g. 65.1, 215.6 and 261.5	Compare and order numbers with one decimal place
Find 1 or 10 more or less than a given number	Identify the number one more and one less than a given number with up to three-digits, where the tens and hundreds digit stays the same, e.g. one more than 345	Identify the number ten more and ten less than a given number with up to threedigits, where the hundreds digit stays the same e.g. ten less than 567		Identify the number one hundred more and one hundred less than a given number with up to three-digits, e.g. one hundred more than 342	Identify the number one more and one less than a given number with up to three-digits, where the tens digit might change, e.g. one more than 459	Identify th ten more a than a give with up digits, whe and hund changes, e than	e number and ten less number o three- e the tens reds digit g. ten less 407	Identify the number one more and one less than a given number with up to three-digits, where the ones, tens and hundreds digits might change, e.g. one more than 499	Find 1, $\mathbf{1 0}$ or 100 more or less than a given number
Round numbers to at least 100 to the nearest 10	Identify the multiples of 10 immediately before and after a given three-digit number		Round numbers with up to threedigits to the nearest ten, e.g. 356 rounds to 360		Identify the multiples of 100 immediately before and after a given number		Round numbers with up to threedigits to the nearest hundred, e.g. 356 rounds to 400		Round numbers to at least 1000 to the nearest 10 or 100

	End of Year 2 expectation	Learning and Progression Statements								End of Year 3 expectation
	Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting)	Children need frequent opportunities to select appropriate strategies from the range they have learnt. The most efficient strategy may differ between children as it will be based on their confidence and competence.								Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting, written method)
	These steps fit the Lancashire Progression Towards Written Calculation Policies and Progression in Mental Calculations Policies									
	Select a mental strategy appropriate for the numbers involved in the calculation	Recognise and solve calculations that involve known facts$\text { e.g. } 60+120$	Recognise that the numbers in addition calculations can be reordered to make calculating more efficient e.g. $70+$ $50+30$ becomes 70 $+30+50$ and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)		Recognise calculations that require counting on or back mentally e.g. 323-70 (counting back in tens) and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)	Recognise calculations that require mental partitioning e.g. 37 +25 and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings		Recognise calculations that require counting on mentally to find the difference e.g. 112 - 89 and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)	Recognise calculations that require counting on or back mentally, bridging through a multiple of 10 efficiently e.g. 204-6 becomes 204-4-2 and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)	Select a mental strategy appropriate for the numbers involved in the calculation
					Recognise calculations that require a mental compensation method e.g. $127+49$ becomes $127+50-1$ and use this strategy where appropriate (This should be supported by concrete materials, pictures or jottings)					
	Understand subtraction as take away and difference (how many more, how many less/fewer)	Use knowledge of number bonds to 10 to recall the complement of any two-digit number to the next multiple of 10 e.g. $73+\underline{\mathbf{7}}=80$		Derive the complement of any two-digit number to 100 ,$\text { e.g. } 73+\underline{27}=100$			Recognise that when numbers are close together, even when the context suggests that it is a 'take away', a counting on strategy is most efficient and use this correctly, e.g. There are 105 sheep in the field. 93 sheep are taken for shearing, how many are left in the field? Calculated using a number line: 93 jump of $\underline{\mathbf{7}}$ to 100 then jump of $\underline{\mathbf{5}}$ to 105 gives a difference of $\underline{\mathbf{1 2}}$		Recognise and use a counting up strategy when the difference between two numbers can be calculated using three or fewer jumps, e.g. 144-86 calculated using a number line: 86 jump of $\underline{4}$ to 90 then jump of $\underline{10}$ to 100 then jump of 44 to 144 gives a difference of $\underline{58}$ or 86 jump of $\underline{14}$ to 100 then jump of $\underline{44}$ to 144 gives a difference of 58	Understand and use take away and difference for subtraction, deciding on the most efficient method for the numbers involved, irrespective of context

	End of Year 2 expectation	Learning and Progression Statements								End of Year 3 expectation
	No equivalent objective in Year 2	Show practically that a fraction is one whole number divided by another (e.g. $\frac{3}{4}$ can be interpreted as $3 \div 4$) e.g. demonstrate that three apples shared (divided) between four children gives $\frac{3}{4}$ of an apple for each child				Show pict e.g. demon	ally that a fraction is (e.g. $\frac{3}{4}$ can be i te using imagery (pic 3 whole ones divid	whol prete es of	number divided by another as $3 \div 4$) jects or fractional strips) that four gives $\frac{3}{4}$	Show practically or pictorially that a fraction is one whole number divided by another (e.g. $\frac{3}{4}$ can be interpreted as $3 \div 4$)
	Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity	Use concrete materials to show that you find $\frac{1}{2}$ of an amount by dividing (sharing) the amount equally between two; $\frac{1}{3}$ is found by dividing the amount equally between three, e.g. to find $\frac{1}{3}$ of 15 you divide (share) 15 objects into 3 equal groups				Understand that finding a fraction of an amount can be found by dividing by the denominator, e.g. to find $\frac{1}{4}$ of 12 you divide 12 by 4				Understand that finding a fraction of an amount relates to division
	No equivalent objective in Year 2	Use concrete materials to show that $\frac{1}{10}$ of an amount can be found by dividing (sharing) the amount equally between ten.		Use concrete materia effect of dividing number by 10 e.g. unit straw for a ten and identify what what stays th	to model the one-digit change each straw piece hanges and same	Understand the tenths heading in place value columns represents a given number of fractional tenths, e.g. $\frac{3}{10}$ is equal to 0.3		De one-d $=0.7$ the the (zero)	ribe the effect of dividing a it number by ten, e.g. $7 \div 10$ he 7 has moved one place to ht; from the ones column to nths column. A place holder is needed in the ones column	Recognise that tenths arise from dividing objects into 10 equal parts and in dividing one-digit numbers or quantities by 10
	Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity	Where a fraction of an amount cannot be found by using known division facts, use concrete materials to find unit fractions (with denominators of ten or less) of a set of objects, e.g. $\frac{1}{7}$ of 63	Use concrete materials to find non-unit fractions (with denominators of ten or less) of a set of objects, e.g. $\frac{3}{5}$ of 65		Where a fraction of an amount cannot be found by using known division facts, use pictorial representations, e.g. bar model, to find unit fractions of a set of objects, e.g. $\frac{1}{3}$ of 51		Use pictorial representations, e.g. bar model, to find non-unit fractions of a set of objects within multiplication table knowledge, e.g. $\frac{3}{8}$ of 32		Use pictorial representations, e.g. bar model, to find non-unit fractions of a set of objects beyond multiplication table knowledge (using a multiplication grid), e.g. $\frac{3}{7}$ of 56	Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators
	Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$	Use concrete materials such as multilink to create equivalent fractions, e.g. one tower of four cubes shows $\frac{1}{4}$ red, two of these towers show $\frac{2}{8}$ red, three of these towers show $\frac{3}{12}$ red etc. but each show one row red out of four rows altogether which is $\frac{1}{4}$				Use pictorial representations such as fraction walls to recognise where fractions are equivalent				Recognise and show, using diagrams, equivalent fractions with small denominators
	No equivalent objective in Year 2	Use pictorial representations, such as fraction strips, to add and subtract fractions with the same denominator within one whole, e.g. $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$				Add and subtract fractions with the same denominator within one whole by adding or subtracting the numerators, e.g. $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$				Add and subtract fractions with the same denominator within one whole [for example, $\left.\frac{5}{7}+\frac{1}{7}=\frac{6}{7}\right]$

	\qquad Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces.	Learning and Progression Statements								End of Year 3 expectation
		Accurately draw 2-D shapes on dotty paper (squared and isometric)				Draw 2-D shapes with specific properties on dotty paper, e.g. draw a foursided shape with exactly two right angles				Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them
		Use construction materials such as Clixi or Polydron to make 3-D shapes			Make the skeletons of 3-D shapes using straws and Playdoh		Recognise and describe 3-D shapes in different orientations, e.g. Which of these shapes has five faces?			
	Distinguish between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise)	Recognise angles as a description of a turn and identify objects in the classroom that turn, e.g. doors, handles and the hands on a clock face				Recognise where sides meet at a vertex in a shape that an angle is created				Recognise angles as a property of shape or a description of a turn
	Distinguish between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise)	Recognise a quarterturn (as one right angle) from different starting points	Recognise a drawn right angle when presented in any orientation		Recognise a half-turn (as two right angles) from different starting points and that the start and end points will be facing in opposite directions	Recognise a three-quarter-turn (as three right angles) from different starting points	Recognise a full turn (as four right angles) from different starting points and that the start and end points will be the same		Identify whether an angle is less than a right angle Identify whether an angle is greater than a right angle	Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
	No equivalent objective in Year 2	Identify horizontal lines as lines that are parallel to the horizon		Identify vertical lines as lines that are at right angles to the horizon		Identify pairs of perpendicular lines as lines that are at right angles to each other, or will be if they are continued, irrespective of orientation		Identify are alway irrespect lines concent	rallel lines as lines that the same distance apart of length (NB parallel also be curved or circles), irrespective f orientation	Identify horizontal and vertical lines and pairs of perpendicular and parallel lines

¢	End of Year 2 expectation	Learning and Progression Statements	End of Year 3 expectation
$\begin{aligned} & \text { E } \\ & 0.0 \\ & 0 \end{aligned}$	No equivalent objective in Year 2	Know that squares in the same vertical column will all have the same letter reference (but a different number reference), e.g. A3 and A5	Describe positions on a square grid labelled with letters and numbers
		Know that squares in the same horizontal row will all have the same number reference (but a different letter reference), e.g. B2 and D2	

	End of Year 2 expectation	Learning and Progression Statements								End of Year 3 expectation
	Compare and sort numbers and common 2-D and 3-D shapes and everyday objects	Use single set Venn diagrams to compare and sort objects, numbers and shapes including items that do not fit the criteria and placing these in the universal set (area outside the circles)		Use Venn diagrams with two non-intersecting sets to compare and sort objects, numbers and shapes including items that do not fit the criteria and placing these in the universal set (area outside the circles)				Use Venn diagram compare and so including items placing these in \qquad	with two intersecting sets to bjects, numbers and shapes t do not fit the criteria and universal set (area outside e circles)	Use sorting diagrams to compare and sort objects, numbers and
		Use one criterion Carroll diagrams to compare and sort objects, numbers and shapes				Use two criteria Carroll diagrams to compare and sort objects, numbers and shapes (understanding that Carroll diagrams are labelled 'is' and 'is not')				3-D shapes
	Interpret and construct simple pictograms, tally charts, block diagrams and simple tables	Interpret and present data using bar charts with a scale in ones	Interpret and pres using bar charts w in twos	nt data a scale	Interpret and using bar charts in f	present data with a scale es	Interpr using ba	and present data charts with a scale in tens	Select the most appropriate scale when representing data in a bar chart or pictogram	Interpret and present data using bar charts,
		Interpret and present data using tables								
	Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. Ask and answer questions about totalling and comparing categorical data	Use and interpret information in scaled bar charts and pictograms and tables to solve one-step questions such as 'How many more?' and 'How many fewer?'				Use and interpret information in scaled bar charts and pictograms and tables to solve two-step questions such as those involving addition of two or more categories to compare with another one, or those to identify a missing category number when given the other category totals and the overall amount				Solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables

	End of Year 2 expectation	Learning and Progression Statements				End of Year 3 expectation
	Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity and volume (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels. Compare and order lengths, mass, volume/capacity and record the results using >, < and =	Measure lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$)	Compare the lengths of different objects	Add values of length ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) (see progression in mental and written addition)	Find the difference between the lengths of objects and say by how much an object is longer or shorter ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) (see progression in mental and written subtraction)	
		Measure mass (kg/g)	Compare the mass of different objects	Add values of mass (kg/g) (see progression in mental and written addition)	Find the difference between the masses of objects and say by how much an object is heavier or lighter (kg / g) (see progression in mental and written subtraction)	Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g);
		Measure volume/capacity (1/ml)	Compare the volume/capacity of different objects	Add values of volume/capacity ($1 / \mathrm{ml}$) (see progression in mental and written addition)	Find the difference between the volumes/capacities of vessels and say how much more or how much less one vessel contains than another ($1 / \mathrm{ml}$) (see progression in mental and written subtraction)	
	Estimate and measure temperature to the nearest degree $\left({ }^{\circ} \mathrm{C}\right)$ using thermometers	There are no steps towards this end of year expectation				Continue to estimate and measure temperature to the nearest degree (${ }^{\circ} \mathrm{C}$) using thermometers
	No equivalent objective in Year 2	Use concrete materials, e.g. straws, to create a 2-D shape; deconstruct the straws into a straight line to show that the perimeter is a measure of length around the boundary				Understand perimeter is a measure of distance around the boundary of a shape
	No equivalent objective in Year 2	Use counting to measure the perimeter of a polygon, either using a trundle wheel to measure large polygons drawn in chalk on the playground where the lengths of the sides are in whole metres, or shapes drawn on squared centimetre paper		Measure the perimeter of simple polygons by measuring each side using a ruler and calculating the total		Measure the perimeter of simple 2-D shapes
	Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times	Tell and write the time on an analogue clock to the nearest minute for times past the hour, e.g. 12 minutes past 2	Tell and write the time on an analogue clock to the nearest minute for times to the hour, e.g. 22 minutes to 4	Know that when reading and writing the time on a digital clock, the hours and minutes are separated by a colon	Tell the time on a digital clock to the nearest minute and know whether this is before or after midday, e.g. $4: 27 \mathrm{am}$ is 27 minutes past 4 in the morning	Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks

Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times	Know common points of reference for time such as the length of break time is 15 minutes, the time for teeth brushing is 2 minutes, the school day lasts for six hours			Use the common points of reference they know to estimate the time of various events			Estimate/read time with increasing accuracy to the nearest minute
No equivalent objective in Year 2	Use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon, midnight						Record/compare time in terms of seconds, minutes, hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon, midnight
	Compare two time intervals which are in the same unit, e.g. I finished my sandwich in 42 seconds, my friend took 56 seconds. Who ate their sandwich quicker?			Record time in terms of seconds, minutes, hours			
Know the number of minutes in an hour and the number of hours in a day	Know that there are 60 seconds in a minute						Know the number of
	Know the number of days in each month						and the number of
	Know that there are 365 days in a year but 366 in a leap year; know that a leap year occurs every 4 years when the year is divisible by 4						and
Compare and sequence intervals of time	Solve time problems working within the hour boundary, e.g. It is 10:30am. My favourite programme starts at 10:45am. How many minutes until it starts?	Solve time problems that involve the start time and duration where the end time is to be calculated, (within the hour) e.g. a cake goes in the oven at $3: 20$. It needs to bake for 30 minutes. At what time do I need to take it out of the oven?	Solve time problems that involve the end time and duration where the start time is to be calculated, (within the hour) e.g. it takes me 25 minutes to walk to school. I arrive at school at 8:50, what time did I set off?	Solve time problems working across the hour boundary, e.g. It is $3: 45 \mathrm{pm}$. How many minutes to $4: 15 \mathrm{pm}$?	Solve time problems that involve the start time and duration where the end time is to be calculated, (beyond the hour) e.g. Mike went on a 45 minute bike ride. He set off at $2: 40$. At what time did he finish?	Solve time problems that involve the end time and duration where the start time is to be calculated, (beyond the hour) e.g. my music lesson is 45 minutes long. It finished at 3:20, what time did it start	Compare durations of events [for example to calculate the time taken by particular events or tasks]
Recognise and use symbols for pounds (£) and pence (p)	Recognise that pence is a fraction of a whole pound		Recognise that when writing amounts of money, either $£$ or p are used but never together		Recognise that when an amount of money is in pounds and pence it can be written with a $£$ sign and a decimal point separating the whole pounds and the pence		Continue to recognise and use the symbols for pounds ($£$) and pence (p) and understand that the decimal point separates pounds/pence

Combine amounts to make a particular value Find different combinations of coins that equal the same amounts of money	Recognise that ten 10 p coins equal $£ 1$		Recognise that each 10 p coin is $\frac{1}{10}$ of $£ 1$, hence 10 p being written as $£ 0.10$ which is consistent with the columns in a place value chart	Recognise that ten 10p coins equal $£ 1$ and that each coin is $\frac{1}{10}$ of $£ 1$
Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	Solve a one-step problem that involves adding two amounts of money, e.g. a television costs $£ 240$ and a games console costs $£ 225$. What is the total cost?	Solve a one-step problem that involves subtracting an amount of money, e.g. John buys an apple for 37 p . He pays with a $£ 1$ coin. How much change does he get?	Solve a two-step problem that involves adding and then subtracting an amount of money, e.g. John buys a comic for $£ 1.50$ and puppet for $£ 4.30$. He pays with a $£ 10$ note. How much change does he get?	Add and subtract amounts of money to give change, using both $£$ and p in practical contexts
Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change and measures (including time)	Children need frequent access to arrange of contexts using the content from all of the above. See Using and Applying, Contextual Learning and Assessment section form the Lancashire Mathematics Planning Disc.			Solve problems involving money and measures and simple problems involving passage of time

