Year 2 Learning and Progression Steps for Mathematics

What are Learning and Progression Steps (LAPS)?

The Learning and Progression Steps are designed to scaffold the learning required in order to meet the expectations of the National Curriculum. Statements in the Lancashire Key Learning for Mathematics document have been broken down into smaller steps to support teachers in planning appropriate learning opportunities. These key pieces of learning will support pupils in becoming fluent in the knowledge and skills of the curriculum and ensure that the learning is effective and sustained.

The number of steps is dependent on the learning and do not constitute expectations for the end of each term. The colour coding is an approximate indicator of end term expectations
Orange (including the end of previous year expectation) are the steps in learning for the autumn term.
Green are the steps in learning for the spring term.
Yellow are the steps in learning for the summer term and incorporate the end of year expectations.
The colours correspond with the structure of the Lancashire Mathematics Curriculum and reflect how often each learning objective is explicitly taught across the year. Some key learning objectives are not taught in every term, and in some cases not in the summer term. This means that end of year expectations may need to be met before the end of the summer term

The final step in the progression for each strand of learning is the end of year expectation.
The steps are not of equal size and different amounts of time may be required for children to move between individual steps. For example,

| Understand how
 multiplication and
 division statements
 can be represented
 using arrays | Use arrays to identify what the term
 'factor' means | Use arrays to identify all the factor
 pairs of a given number | Identify factor pairs of a given number
 within the multiplication tables that
 they know |
| :--- | :--- | :--- | :--- | | Progression is likely to be |
| :--- |
| within the same lesson | | Progression is likely to be |
| :--- |
| over a series of lessons |

Some learning within the same end of year expectation has been split and designed to run concurrently alongside each other. For example,

```
Read and write number
up to }1000\mathrm{ in numeral
```

 and in words
 | Read multiples of 1000 to 10000 in
 numerals and in words | |
| :---: | :---: |
| Write multiples of 1000 to 10000 in
 numerals and in words | |

Read multiples of
numerals and in words

| Read numbers to 10000 where 0 |
| :---: | :---: |
| not used as a place holder |

Read numbers to 10000 where 0 is
used as a place holder
:---:
used as a place holder

Read and write numbers to at least 10000

Some LAPS may need to be completed before another can be started.

Where have they come from?

The Learning and Progression Steps (LAPS) have been derived from the Lancashire Key Learning in Mathematics statements, identified primarily from the National Curriculum 2014 programmes of study.

How are they different from the Key Learning Statements?

The Learning and Progression Steps (LAPS) are smaller, progressive steps which support learning towards the Key Learning in Mathematics expectations.

How are they different from the Key Learning Indicators of Performance (KLIPs)?

The Key Learning Indicators of Performance (KLIPs) document is an assessment tool. The Learning and Progression Steps (LAPS) document is a planning tool and is not intended to be used for summative assessment purposes. However, they may support teachers in judging whether children are on track to meet the end of year expectations at different points throughout the year.

The terms 'entering', 'developing' and 'secure' are used in Lancashire's assessment approach, KLIPs, as summative judgements in relation to age related expectations. Definitions for these terms can be found in the introduction to the KLIPs document.

How might Learning and Progression Steps (LAPS) in Mathematics be useful?

Learning and Progression Steps (LAPS) may be used in a number of ways. For whole class teaching, LAPS may be used to support differentiation. When planning, it may be appropriate to use LAPS statements to inform learning objectives for a session or number of sessions. Learning and Progression Steps (LAPS) in Mathematics should be selected according to the learning needs of the individual or group. Emphasis however, should always be on developing breadth and depth of learning to ensure skills, knowledge and understanding are sufficiently embedded before moving on.
The LAPS should not be used as an assessment tool, but they can inform teachers about children's progress towards the end of year expectations at the end of each term.

Are LAPS consistent with the other resources from the Lancashire Mathematics Team?

Yes, the LAPS are related to the content of the Mathematics Planning Support Disc and also the Progression Towards Written Calculation Policies and the Progression in Mental Calculation Strategies.
These can be found on the website:
www.lancsngfl.ac.uk/curriculum/primarymaths

Key Learning in Mathematics - Year 2

Number - number and place value

- Count in steps of 2,3, and 5 from 0, and in tens from any number, forward and backward
- Read and write numbers to at least 100 in numerals and in words
- Recognise the place value of each digit in a two-digit number (tens, ones)
- Identify, represent and estimate numbers using different representations, including the number line
- Partition numbers in different ways (e.g. $23=20+3$ and $23=10+13)$
- Compare and order numbers from 0 up to 100 ; use $<,>$ and $=$ signs
- Find 1 or 10 more or less than a given number
- Round numbers to at least 100 to the nearest 10
- Understand the connection between the 10 multiplication table and place value
- Describe and extend simple sequences involving counting on or back in different steps
- Use place value and number facts to solve problems

Number - fractions

- Understand and use the terms numerator and denominator
- Understand that a fraction can describe part of a set
- Understand that the larger the denominator is, the more pieces it is split into and therefore the smaller each part will be
- Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity
- Write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$
- Count on and back in steps of $\frac{1}{2}$ and $\frac{1}{4}$

Number - addition and subtraction

- Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting)
- Select a mental strategy appropriate for the numbers involved in the calculation
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Understand subtraction as take away and difference (how many more, how many less/fewer)
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Recall and use number bonds for multiples of 5 totalling 60 (to support telling time to nearest 5 minutes)
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- adding three one-digit numbers
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- Solve problems with addition and subtraction including with missing numbers. - using concrete objects and pictorial representations, including those involving numbers, quantities and measures

Geometry - properties of shapes

- Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line
- Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
- Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]

Geometry - position and direction

- Order/arrange combinations of mathematical objects in patterns/sequences
- Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)

Statistics

- Compare and sort objects, numbers and common 2-D and 3-D shapes and everyday objects
- Interpret and construct simple pictograms, tally charts, block diagrams and simple tables
- Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity
- Ask and answer questions about totalling and comparing categorical data

Number - multiplication and division

- Understand multiplication as repeated addition and arrays
- Understand division as sharing and grouping and that a division calculation can have a remainder
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Derive and use doubles of simple two-digit numbers (numbers in which the ones total less than 10)
- Derive and use halves of simple two-digit even numbers (numbers in which the tens are even)
- Calculate mathematical statements for multiplication using repeated addition) and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs
- Solve problems involving multiplication and division (including those with remainders), using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Measurement

- Choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity and volume (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels
- Compare and order lengths, mass, volume/capacity and record the results using $>$, < and =
- Recognise and use symbols for pounds ($£$) and pence (p)
- Combine amounts to make a particular value
- Find different combinations of coins that equal the same amounts of money
- Compare and sequence intervals of time
- Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times
- Know the number of minutes in an hour and the number of hours in a day
- Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change and measures (including time)

These Learning and Progression Statements (LAPS) are designed to show the necessary steps in learning to make effective and sustainable progress within a single year. They begin with the 'end of year' expectation from the previous year and build up to the 'end of year expectation' of the current year.

The number of steps is dependent on the learning and do not constitute expectations for the end of each term.
The steps are not of equal size and different amounts of time may be required for children to move between individual steps.

	End of Year 1 expectation Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Count in multiples of twos, fives and tens	Learning and Progression Statements								End of Year 2 expectation
		Count in steps of 10 forwards and backwards from any number using base 10 equipment	Count in steps of 10 forwards and backwards from any number using a 100 square	Ident square 2 or 5 from	d discuss on a 100 n counting ps of 0 and tens number	Count in st from 0 using equipment counters arranged in	s of 3 ractical uch as ubes array	Count in steps of 3 using a fully labelled number line	Count in steps of 3 from 0	Count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward
		Read numbers up to 100 in 20 and the	words using a word words for the multi	$\begin{aligned} & \text { giving } \\ & \text { f 10) } \end{aligned}$	bers up to			numbers up to 100 in	words	Read and write numbers to at least
		Write numbers up to 100 in 20 and the	in words using a word words for the multi	(giving n f 10)	bers up to			numbers up to 100 in	ords	100 in numerals and in words
	Begin to recognise the place value of numbers beyond 20 (tens and ones)	Make and identify a two digit number up to 50 using concrete materials e.g. bundles of straws, base 10 apparatus and match these to arrow cards	Make and identify digit number up t concrete materia place value co abacus and match arrow car	two using uch as ers, ese to	Make an digit num using con e.g. bundl 10	tify a two up to 100 materials traws, base atus	Make a num concr place	entify a two digit up to 100 using materials such as counters, abacus rrow cards	Say what each digit represents in a two digit number	Recognise the place value of each digit in a two-digit number (tens, ones)
	Identify and represent numbers using objects and pictorial representations including the number line	Make and identify a two digit number up to 50 using concrete materials e.g. bundles of straws, base 10 apparatus and arrow cards	Make and identify a two digit number up to 50 using concrete materials such as place value counters, abacus and arrow cards	Make two to 100 mater appa	identify a number up g concrete e.g. base 10 s, bundles raws	Make and two digit nu 100 using such as pl counters, a arrow	entify a ber up to uipment e value acus and rds	Correctly place a number from 1 to 100 on a number line with multiples of 10 labelled	Correctly place a number from 1 to 100 on a number line with multiples of 10 marked but not labelled (with start and end labelled 0 and 100)	Identify, represent and estimate numbers using different representations, including the number line
	No equivalent objective in Year 1	Make a two-digit number using concrete materials e.g. base 10 apparatus, bundles of straws, place value counters	Partition a tw number (represe base 10 apparatu and ones e.g. 43 (40) and 30	digit using into tens 4 tens (3)	Partition a (represent apparatus) in different group is a	o-digit numbe using base 10 to two groups ays where one multiple of 10	Partition (repre appar e.g.	a two-digit number nted using base 10 us) into two groups different ways $=40+3 \text { or } 31+12$	Partition a two-digit number (represented using base 10 apparatus) in different ways e.g. $43=40+$ 3 or $20+23$ or $20+21+2$	Partition numbers in different ways $\begin{gathered} \text { (e.g. } 23=20+3 \text { and } \\ 23=10+13) \end{gathered}$

	Use the language of: equal to, more than, less than (fewer), most, least	Compare two 2-digit amounts when represented using the same practical equipment saying which amount has more and fewer/less Pay particular attention to numbers that have the same digits e.g. 34 and 43		Comp amount the sa sayin mor Pay part tha	ree or more 2-digit n represented using ractical equipment ich amounts have st and fewer/less/ west/least attention to numbers the same digits 34 and 43	Order three or more 2-digit amounts when represented using the same practical equipment Pay particular attention to numbers that have the same digits e.g. 34 and 43		Use the <, > and = signs when comparing one and two-digit numbers Pay particular attention to numbers that have the same digits e.g. 34 and 43		Compare and order numbers from 0 up to $\begin{gathered} \text { 100; use <, > } \\ \text { and = signs } \end{gathered}$
	Given a number, identify one more and one less	Identify the number less than a given num tens digit stays	e and 1 where the me	Identify less than	umber 1 more and 1 n number where the t might change	Identify the number less than a given	e and	Ident stays th remov	t changes and what when 10 is added or a two-digit number	Find 1 or 10 more or less than a given number
	No equivalent objective in Year 1	Identify the multiples or after a	0 immedia number	before	Identify the multiples and after a given numb to each of these mult multiple	immediately before ot ending in 5), count of 10 and say which is closest	Recog betwe	at if a multip to the	r is exactly half way 10 , then the number multiple of 10	Round numbers to at least 100 to the nearest 10
	Recognise and create repeating patterns with numbers, objects and shapes	Know that our num each	stem is or epresents is 4 group	ised usi two-dig ten and	ups of 10 and what ber,	Recognise the	pond 6	$\begin{aligned} & \text { betwee } \\ & =6 \\ & =60 \end{aligned}$	tens, e.g.	Understand the connection between the 10 multiplication table and place value
	Identify odd and even numbers linked to counting in twos from 0 and 1	Describe the rule in a number sequence counting on and back in twos from any number	Exten sequence and back any	mber unting on os from ber	Describe the rule in a number sequence counting on and back in tens or twos from any number	Extend number sequences counting on and back in tens or twos from any number	Describ numb counting in fives, from	rule in a quence and back s or twos number	Extend number sequences counting on and back in fives, tens or twos from any number	Describe and extend simple sequences involving counting on or back in different steps
	Solve problems and practical problems involving all of the above	See	Child and App	eed fre Conte	access to a range of earning and Assess	xts using the conten sections from the La	$\begin{aligned} & \text { all of } \\ & \text { e Ma } \end{aligned}$	ove. ics Pl	Disc.	Use place value and number facts to solve problems

	End of Year 1 expectation	Learning and Progression Statements										End of Year 2 expectation
	No equivalent objective in Year 1			n need fre ficient str	nt opportun y may differ	to	hildr	riate strat it will be	es from the range ed on their confid	y have and com	etence.	Choose an appropriate strategy to solve a calculation based upon the numbers involved (recall a known fact, calculate mentally, use a jotting)
		Thes	ps	Lancashir	gression Tow		tten	ation Po	and Progression	ental	ulations Policies	
	No equivalent	Recognise and solve calculations that	Reco numb calcu reord coun effici becom	se that the in addition ions can be ed to make g on more e.g. $4+33$ $33+4$ and	Recognis calculations require counti or back men e.g. 47-2 (counting back tens) and use			gnise ons that mental ing e.g. and use this where	Recognise calculations that require counting on mentally to find the difference e.g. $73-65$ and use this	Recog countin through 4 and use (This sh ma	ise calculations that require on or back mentally, bridging multiple of 10 efficiently e.g. +6 becomes $48+2+4$ is strategy where appropriate uld be supported by concrete rials, pictures or jottings)	Select a mental strategy appropriate for the numbers
				s strategy ppropriate should be orted by materials, or jottings)	strategy wh appropriat (This should supported concrete materia pictures or jot		ap (Th supp concr pictur	priate ould be ted by materials, r jottings)	appropriate (This should be supported by concrete materials, pictures or jottings)	Recog ment 73 and use (This sh ma	se calculations that require a compensation method e.g. -9 becomes $73-10+1$ is strategy where appropriate uld be supported by concrete rials, pictures or jottings)	involved in the calculation
	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	Model addition nu sentences usin concrete material identify which group number sentence a parts and which is the	er nd the the hole	Recognise two or mo be done	at addition of numbers can any order		e fact or mo done in order for	addition of mbers can order to ulations ncy	Model subtractio sentences concrete mate identify which gro number sentenc parts and which is	number ng als and ps in the are the he whole	Recognise that (in practical situations) the subtraction of one number from another cannot be done in any order	Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	Know that 'take awa an amount (a part) another amount Identify subtraction a different contexts by and interpre language in	is rem rom w e who 'take nderst g the lved	 in of of 	that 'differenc mounts and fin re or how man		paring w many wer	Model sub numb co	raction as 'difference' r sentences using crete materials	Rec un	ise subtraction as 'difference' in different contexts by standing and interpreting the language involved	Understand subtraction as take away and difference (how many more, how many less/fewer)
	Represent and use number bonds and related subtraction facts within 20	Recall and use addition subtraction facts tota for addition and subt	and ng 10 ction	Recall and us subtraction numbers addition a	addition and facts of all up to 10 for subtraction		and ction dition	ddition and totalling 20 subtraction	Derive and use ad subtraction f multiples of 10 to	ition and ts of alling 100	Use ten frames to explore addition and subtraction facts for all numbers up to 20	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

© Lancashire Mathematics Team - Lancashire County Council 2018

	End of Year 1 expectation	Learning and Progression Statements										End of Year 2 expectation
	No equivalent objective in Year 1	Represent doubling usir concrete material Understand that doubling number to itself and multip		Writ	wo diffe nces to ling sit $6+6=$ 6×2	number esent a e.g. d	Represent add three or concrete groups and form as	g the sa re time erials ar in mor ray and tiplicati	e number using nged in tructured nk this		rite two different number ences to represent repeated addition situations e.g. $\begin{aligned} 5+5+5 & =15 \text { and } \\ 5 \times 3 & =15 \end{aligned}$	Understand multiplication as repeated addition and arrays
	No equivalent objective in Year 1	Share an amount equally a where there is no remain share 20 sweets between		In real amount e there is a pencils bet pencils on that	fe conte qually acr remainder veen 3 ta each tabl cannot	share an sets where g. share 23 s results in 7 and 2 pencils hared	Make equa amount whe e.g. make tea 30	ed gro here is of 5 fr ren; 2	from an remainder a group of 6		equal sized groups from an nt where there is a remainder g. give 3 buttons to each bread man when there are 23 buttons in total; $26 \div 5$	Understand division as sharing and grouping and that a division calculation can have a remainder
	No equivalent objective in Year 1	Model multiplication number sentences using concrete materials	$\begin{aligned} & \text { Create } \\ & \text { the } \\ & \text { st } \\ & \text { repr } \\ & \text { m } \\ & \text { num } \end{aligned}$	an array and tements that sented to sh liplication bers can be any order	identify cation tare ow that f two done in	Use the multiplic numbers can order to multiplicat from anoth know what are but I kn two are the	fact that on of two done in any derive one statement e.g. 'I don't lots of four four lots of ht so it is me.'	$\begin{array}{r} \text { Model } \\ \text { ser } \\ \text { cono } \end{array}$	vision num nces using te materia		Recognise that (in practical situations) the division of one number from another cannot be done in any order because they give different answers	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
	Count in multiples of twos, fives and tens	Recall and use multiplica division facts for the 10		Recall and divisio	use multip acts for	ation and $5 x$ table	Recall and division fa	multipl for the	on and table		y odd and even numbers by at the ones digit and relating numbers to multiples of 2	Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
	Recall and use doubles of all numbers to 10 and corresponding halves	Use base 10 equipment to the relationship betwe doubling of a single digit n the doubling of its related of 10 e.g. double 3 is 6 and tens is 6 tens which is	lore e er to tiple ble 3 \qquad	Use t relati doub	previou ship to re of all mu up to	dentified I and use les of 10	Use the p relationsh doubles of	iously to recal 1 multip to 100	ntified nd use s of 10		artitioning to double simple digit numbers (numbers in the ones total less than 10)	Derive and use doubles of simple two-digit numbers (numbers in which the ones total less than 10)
	Recall and use doubles of all numbers to 10 and corresponding halves	Use base 10 equipm relationship between the even number to the halvin of 10 e.g. half of 6 is 3 and which is	explo ng of a its rela of 6 t	e the ingle digit d multiple s is 3 tens	Use th and	eviously iden halves of all with an ev	ed relationshi Itiples of 10 up tens digit	$\begin{aligned} & \text { o recall } \\ & 100 \end{aligned}$	Use par number	$\begin{aligned} & \text { onin, } \\ & \text { numl } \end{aligned}$	halve simple two-digit even in which the tens are even)	Derive and use halves of simple two-digit even numbers (numbers in which the tens are even)

	End of Year 1 expectation	Learning and Progression Statements					End of Year 2 expectation
	Recognise and name common 2-D shapes, including rectangles (including squares), circles and triangles	Know that a vertex in a 2-D shape is where two sides meet (and the plural is vertices)	Identify the number of sides and vertices of 2-D shapes and recognise that this is the basis for naming them, e.g. any shape with five sides (or vertices) is a pentagon	Describe 2-D shapes according to the number of sides and vertices, and whether any of the sides or vertices are the same size as each other, e.g. oblong and regular hexagon	Identify a vertical line of symmetry in a shape	From a set of shapes, identify those with a vertical line of symmetry and those without	Identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line
	Recognise and name common 3-D shapes, including cuboids (including cubes), pyramids and spheres	Know that a face is a flat surface of a 3-D shape	Identify the number and shape of the faces or curved surfaces of 3-D shapes and recognise that this is the basis for naming them, e.g. a triangular prism has three rectangular faces and two identical (congruent) triangular faces which can be any type of triangle	Know that an edge on a 3-D shape is where two faces / curved surfaces meet Know that a vertex on a 3-D shape is where three or more edges meet	Describe 3-D shapes according to the number and shape of the faces, the number of edges and vertices and whether any of the faces are the same as each other	Identify similarities and differences between pairs / sets of 3-D shapes	Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
	Recognise and name common 2-D shapes, including rectangles (including squares), circles and triangles	Find	ce on a 3-D shape that is a	fied 2-D shape, e.g. find th	re face on this square bas	amid	Identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]

	End of Year 1 expectation Recognise and create repeating patterns with objects and shapes	Learning and Progression Statements					End of Year 2 expectation
		This is consolidation of Year 1 learning and therefore there are no steps towards this end of year expectation					Order/arrange combinations of mathematical objects in patterns /sequences
	Describe position and direction Describe movement, including whole, half, quarter and three-quarter turns	Know that a full turn is the same as a turn through four right angles	Know that a half turn is the same as a turn through two right angles	Know that a quarter turn is the same as a turn through one right angle	Know that a three-quarter turn is the same as a turn through three right angles	Understand and use the language clockwise and anti-clockwise	Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise)

	End of Year 1 expectation	Learning and Progression Statements								End of Year 2 expectation
	Measure and begin to record: - lengths and heights, using nonstandard and then	Choose the correct sta measure length and h	rd units to ht (m / cm)	Choos appropria lengths and rule, tap	d correctly use the quipment to measure eights e.g. ruler, metre easure, trundle wheel	Know common points for length / height suc 30 cm and a doorway	reference a ruler is 2 m tall	Use the they kn and	mon points of reference estimate the lengths hts of other objects	
	standard units (m / cm) - mass/weight, using non-standard and then manageable	Choose the correct sta measure mass	d units to g)	Choo equipm balance	nd use the correct o measure mass e.g. s, kitchen scales (with opriate scale)	Know common points for mass such as a small crisps has a mass of b and 30 g and a bag of mass of 1 kg	reference packet of veen 25 g gar has a	Use the they kn	mon points of reference estimate the mass of her objects	appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g);
	- capacity and volume using nonstandard and then manageable standard units	Choose the correct sta measure volume (litres/ml	d units to acity	Choo equipm capacity jugs w	nd use the correct to measure volume / measuring cylinders / appropriate scales	Know common points for volume / capacity teaspoon / medicine capacity of 5 ml and a la fizzy drink is 2	reference ch as a on has a bottle of es	Use the they kn in /	mon points of reference estimate the volume ity of other vessels	capacity and volume (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers
	(litres/ml) - time (hours/ minutes/seconds) within children's range of counting competence	Know that temperature is measured in degrees Celsius (${ }^{\circ} \mathrm{C}$)		that ature is using a and read ature on a meter	Know that average room temperature is between $18^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$	Use the knowledge of average room temperature to say whether the temperature outside is hotter / warmer or colder / cooler	Estimate temper partially thermom where the mult	d read the ure on a marked ter scale eading is a e of 5	Estimate and read the temperature on a partially marked thermometer scale, using the labelled marks to read to the nearest degree	vessels
	Compare, describe and solve practical problems for: - lengths and heights (for example, long/short, longer /shorter, tall/short, double/half) - mass/weight (for example, heavy/ light, heavier than, lighter than) - capacity and volume (for example, full/empty, more than, less than, half, half full, quarter) - time (for example, quicker, slower, earlier, later)	Compare	lues of tw s, s, pacities		Order the valu volume	three or more: s, s, pacities	Use <, > a m e.g. 34 cm compa	$d=\text { to com }$ ses and $43 \mathrm{~cm} ; 76$ ing two diff	the values of lengths, es / capacities, $7 \mathrm{~g} ; 80 \mathrm{ml}=80 \mathrm{ml}$ (when tly shaped vessels)	Compare and order lengths, mass, volume/capacity and record the results using >, < and =

© Lancashire Mathematics Team - Lancashire County Council 2018

Recognise and know the value of different denominations of coins and notes	Recognise that p in the context of money stands for pence and use this symbol correctly			Recognise that $£$ in the context of money stands for pounds and use this symbol correctly (whole pounds only)			Recognise and use symbols for pounds (£) and pence (p)
Recognise and know the value of different denominations of coins and notes	Add two prices together to find the total cost	Recognise that amounts of money can be partitioned in different ways (using coins) e.g. 50 p can be 30 p and 20 p or $15 p$ and 35 p		For a given value, iden more can be spent fo purchase of on e.g. 38 p + ?	how much wing the m,	Identify combinations which can be bought for a specific amount of money e.g. what two or more items can I buy for exactly 70 p?	Combine amounts to make a particular value
Recognise and know the value of different denominations of coins and notes	Exchange $2 p, 5 p$ and $10 p$ coins for the correct number of 1 p coins and understand that, for example, ten 1 p coins have the same value as one 10 p coin		Exchange 20 p, 50 p and $£ 1$ coins for the correct number of 10 p coins and understand that, for example, five 10 p coins have the same value as one 50 p coin		Exchange different coins for other coins of the same value		Find different combinations of coins that equal the same amounts of money
Recognise and use language relating to dates, including days of the week, weeks, months and years	Know that there are 60 minutes in 1 hour						Know the number of
	Know that there are 24 hours in 1 day						hours in a day
Recognise and use language relating to dates, including days of the week, weeks, months and years	Put units of time (second, minute, hour, day, week, month, year) in order from shortest to longest and vice versa			To enable comparison between different units of time, use appropriate calculation strategies to convert between units, e.g. $\frac{1}{2}$ an hour in minutes is $\frac{1}{2}$ of 60 minutes which is 30 minutes; the number of hours in 2 days is double 24 which is 48 hours			
Sequence events in chronological order using language (for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening				Compare and sequence intervals of time			

